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ABSTRACT A possible model is analyzed for the mainte-
nance of attachment of a shortening microtubule (MT) to a
kinetochore. In this model it is assumed that a MT is inserted
and held in a sleeve or channel of the outer layer of a
kinetochore while subunits are lost from the MT tip through the
central layer of the kinetochore. A second problem considered
is the elementary bioenergetics of MT growth and shortening,
as associated with the presence or absence of a GTP cap on the
MT ends. The free-energy source is the hydrolysis of GTP in
solution. The third problem discussed is the kinetics of capture
of a centrosomal MT by a target (e.g., a kinetochore).

The two-phase macroscopic kinetic model (1) of the end of a
microtubule (MT) is used as the basis for the discussion
below. The two phases refer to possible gross states of a MT
end, which can either have a GTP cap (2) or not have such a
cap. A MT end with a GTP cap is stable; an end without a cap
is unstable (3). The two-phase kinetic model arose from a
series of theoretical and experimental studies (1-7). Various
consequences have been examined elsewhere (8-12).

It is somewhat puzzling how pole-to-kinetochore MTs in
anaphase can shorten (lose subunits) while remaining at-
tached to a kinetochore. A simple quantitative model is
presented here that might provide a possible mechanism; it is
based on an idea introduced in figure 23B of ref. 13. Actually,
it is not certain that shortening occurs at the kinetochore end
ofpole-to-kinetochore MTs. However, for concreteness, this
assumption is made here. In any case, the analysis shows in
principle how a "sleeve" can provide a stable attachment for
a shortening MT end.
Another related topic considered is the simple bioenergetic

basis of MT growth from a centrosome, capture of the free
MT end by a target (e.g., a kinetochore) followed by
shortening of the MT from the target end, which has the effect
of pulling the target in to the centrosome.
The third topic examined is the mean time required for a

target to capture a centrosomal MT, at steady state.

Model for Microtubule Shortening

Part ofa three-layered kinetochore is shown schematically in
Fig. 1. The outer layer is assumed to furnish channels or
sleeves for MT insertion. The MT is shown schematically as
a two-stranded structure. The attachment of a MT is due to
attractive forces between the MT subunits and the wall of the
sleeve. It is assumed that subunits can be lost (or gained) from
the end of the inserted MT via the inner unoccupied part of
the sleeve and the central layer of the kinetochore (which, in
photographs, appears much less dense than the other layers).

If the outer layer is, say, 400 A thick (14), then the sleeve
could accommodate (when full) about M = 65 subunits
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FIG. 1. Schematic picture of a MT (shown as two-stranded) held
by a sleeve or channel in the outer layer of a kinetochore. (a)
Arbitrary position n of the MT tip. (b) Extreme positions of the MT
tip (n = 1, AM) in the sleeve.

(tubulin dimers). The thickness and M may be larger than
this. We keep track of the position of the MT end in a sleeve
by the integer n = 1, 2, . . . , M. Fig. la shows a MT end at
an arbitrary value of n; Fig. lb shows the two extremes, n =
1 (fully inserted) and n = M (almost unattached).
Our object is to calculate the steady-state distribution in

n-i.e., to see where the MT end is likely to locate itselfinside
a sleeve. We now consider in turn the several physical
features that are involved in this problem; these contribute
the various factors that appear in the rate constants (Fig. 2a)
that govern the random walk of the MT end on the integers
n = 1,... , M. The steady-state distribution in n, calculated
numerically, then follows directly from Fig. 2a.
The steps in the random walk (An = ± 1) are of length 1 =

6.15 A. The diffusion coefficient of a chromosome is D =
kT/; = KP, where ; is the friction coefficient and K is the rate
constant for discrete steps of length 1, corresponding to D.
From FCh = (v, where FCh = 10-8 dyne (1 dyne = 10 p.N) is
the resisting force of a chromosome moving toward the pole
with velocity v = 1 Am-min' (15), we find; = 6 x 10-3
g sec'1 and then K 1800 51.

Let w be the (negative) free energy of interaction of a
subunit in a MT with the wall of a sleeve. For a MT at n, this
free energy is (M - n)w. This effect tends to pull the MT into
the sleeve (n -* 1); see figure 23B of ref. 13. A step to the right
in Fig. la or 2a increases the free energy of the MT by -w.
Hence, K in Fig. 2a for steps to the right must be modified to
KS, where s = ew/kT < 1.
A significant w (see below) implies close contact between

MT and sleeve. As a consequence ofmolecular "roughness,"
one might expect a resistance or potential barrier to move-
ment of the MT in the sleeve that increases linearly with the
depth of the MT. This is indicated schematically in Fig. 2b,

Abbreviation: MT, microtubule.
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FIG. 2. (a) Kinetic diagram and rate constants for a random walk
of the MT tip when inserted in a sleeve. (b) Schematic free-energy
curve showing the origin of parameters s = ew/kT and r = e-b/kT. (c)
Extension of scheme in a to n < 1, which is necessary if there is
significant population at n = 1 (the MT penetrates into the central
layer).

where the unit potential barrier is b. We define r= e-blkT <
1. The factors r, r2,.. , rt included in Fig. 2a take care of
this effect. These factors would have no influence on an
equilibrium distribution of n (they cancel if P3s and ac are
omitted from Fig. 2a) but they do have the effect, in the
steady state of interest here (with P3s and ac included), of
limiting the extent of penetration of the sleeve by the MT
because the steps at small n become relatively slow.
Because of the frictional resistance of the chromosome to

movement, there is an effective (positive) force F (Fig. la)
tending to pull the MT out of the sleeve (13). Because there
may be 30 or 40 MTs attached to a kinetochore, F might be
of order FCh/35 - 10-8/35 dyne. The thermodynamic effect
ofF is that the free energy of the MT decreases by an amount
Fl if n -> n + 1. We assume that this free energy is split
equally between forward and backward rate constants, so
that a factor f 1 appears in the rate constant for n -- n + 1
in Fig. 2a and a factorf appears in n + 1 -+ n, wheref =
e-FI/2kT < 1. Thus F favors larger values of n (less penetra-
tion). Actually, with the value of F mentioned above, f =
0.99979; hence this effect is negligible. IfF is 100 times larger,
f = 0.979. Even in this case the effect of F is quite small.

So far we have discussed the motion of an intact MT in the
sleeve. The value of n can also change by gain or loss of
individual subunits from the tip of the MT (see the arrow
labeled fBs in Fig. la). The a end of a MT is the end attached
to a kinetochore. This end is in the unstable shortening phase
(no cap); see the Introduction. The rate constant 13 here is the
same as -J2a. at c = 0 in ref. 7 or ref. 12; that is, 13 = 340 s'1.
We approximate J2,r(c) (figure 3 of ref. 12) by ac - 3 here,
where c is the local subunit concentration (in the central layer
and sleeves) and a is the small average slope of J2a(c). When
a single subunit is added to or lost from a MT in a sleeve, an
extra free energy w (interaction of the subunit with the wall
of the sleeve) is involved. We assume that this affects P3 but
not a (diffusion controlled). Hence 8 is reduced to Ps in the
sleeve (it is harder for a subunit to break loose). The rate
constants P3s and ac are included in Fig. 2a. Loss of subunits
from the MT tip tends to increase the n values of the
steady-state distribution.
For simplicity in the calculations below, we now assume

that ac is small and can be neglected in Fig. 2a (primarily
because a is small). The rate of loss of subunits from an
attached MT is then (3s. The rate of movement of a chromo-
some toward the pole is about 1 pim min1 (15), which
corresponds to the loss of about 27 subunits s-1 from the
attached MTs. Hence we take (3s = 27 s'l and s = 27/340.
This value of s corresponds to w -1500 cal mol- (1 cal =
4.18 J).

Fig. 3 shows illustrative steady-state probability distribu-
tions p,, calculated numerically from Fig. 2a using K = 1800

s-1, s = 27/340, M = 65,f= 1, ac = 0, and (3 = 340 s-1. All
of these distributions are quite satisfactory. That is, the MT
can lose subunits at 27 s-1 but still remain attached in-
definitely. The peak in the n distribution (see below) moves
to n = 48.1 at r = 0.8 and to n = 55.0 at r = 0.7. In the latter
case there would be a small rate of MT detachment from
position n = M (Fig. 2a). Hence we require, for indefinite MT
stability in the sleeve in this example, r > 0.7.

If r = 0.93, the peak in n is at 9.8; there will be a small
probability p1 at n = 1. Hence for r > 0.93, the kinetic scheme
has to be extended as in Fig. 2c into the region n < 1 (the MT
penetrates into the central layer). However, there are only
very limited possibilities in this range of r because it is
generally not possible to keep the rate of subunit loss as low
as 27 s-1 (note ,3, not ,3s, in Fig. 2c), even by reducing s (when
s = 0, the largest possible r, with rate of subunit loss 27 s-1,
is 0.9386). Hence the practical range in r, with the other
parameters chosen in this illustration, is 0.7 < r < 0.9386.
The maximum in the steady-state n distribution, used

above, can be calculated as follows. Let nm,, be the required
location of the maximum in p, and let n* be the value of n that
gives equal forward and backward rate constants between n*
and n* + 1 (Fig. 2a):

KsrMfnl+l f l + 3S = KrM-n*+lf+ ac. 11]

Ifwe solve this equation for n*, then nm,,, = n* + 1/2. Thus
we find

3 lnR
nmax=M+ -

2 In r
[2]

where
_ (83s-ac
Kf- sf')

Simplified Bioenergetics of the Two-Phase Model

An idealized and simple treatment of the basic bioenergetics
of growing (capped) and shortening (uncapped) MTs is
presented here. Despite the simplicity, this analysis is ad-
equate to understand the essentials of the problem. The
qualitative background for this discussion is given in ref. 11
and the quantitative background is in ref. 13 (section IV A).

In the equations, we use T to refer to GTP-tubulin and D
to refer to GDP-tubulin. The chemical potentials of these two
species, as monomers at concentrations CT and CD, are

AT = 9T + RTln CT

/-LD = AOD + RT In CD.

[3]

[4]
Similar expressions apply for /GTP, AGDP, and ,up, the
chemical potentials in solution of GTP, GDP, and Pi. The
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FIG. 3. Examples of the steady-state distribution Pn(probability
of the MT tip being at position n). In all three cases the MT tip is
losing subunits at the rate 27 s'lbut the MT is stable in the sleeve.
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concentrations of all of the above five species are considered
as steady-state constants, below.

If GTP-tubulin monomer aggregates to form GTP-tubulin
polymer (i.e., a hypothetical MT in which GTP hydrolysis is
inhibited), the chemical potential of the GTP-tubulin poly-
mer, denoted by Tu is independent of CT. Let CT be the
(critical) concentration of GTP-tubulin monomer at which
GTPtubulin monomer and GTP tubulin polymer are in equi-
librium. Then, at equilibrium,

AOT = A + RT IncT. [5]

If we use this relation in Eq. 3 to eliminate ,

/T(CT) = A4JT + RT In (CT/CT). [6]

An analogous equation applies to GDP-tubulin monomer and
polymer (see below). Fig. 4 includes /uoT/RT (constant) and
,uT/RT as a function of ln(cr/cf). If GTP-tubulin polymerizes
at a concentration CT > CT (in the example in Fig. 4, CT = e CT
= 148.4c¶T), the process is spontaneous and the free-energy
change per mol (negative) is

=A1=OT - /.T(CT) = -RT In (CT/CT).T 7]

The quantity A;lu is shown in Fig. 4.
With GTP-tubulin polymer formed, we imagine the inhibi-

tion on GTP hydrolysis to be lifted so that GTP-tubulin
polymer transforms spontaneously into GlP tubulin polymer
(i.e., a MT with GDP tubulin subunits), with release of Pi into
the solution. The constant chemical potential of GDP-tubulin
polymer is denoted tOD. The free-energy change per mol
(negative) for this process is (Fig. 4)

quence ofthe hydrolysis ofGTP. The fact that AU2 is negative
is a consequence of the hydrolysis of GTP on the polymer.
Also included in A12 is the positive free-energy change
associated with the change in two-dimensional crystal struc-
ture, GTP-tubulin polymer -- GDP-tubulin polymer.
The relative instability of the GDP-tubulin polymer is

reflected in a much larger critical concentration CD (Fig. 4) for
formation of GDP-tubulin polymer from GDP-tubulin mono-
mer, compared with ce for the formation of GTP-tubulin
polymer from GTPtubulin monomer (in the example in Fig.
4, ceD/cT = elo = 2.2 x 104). As a consequence, at a typical
concentration CD < CD, GDP-tubulin polymer will disassem-
ble from the ends into GDP-tubulin monomer at concentra-
tion CD. In Fig. 4, CD = CT/10 is used, which is realistic (16).
The spontaneous process GDPstubulinpolymer
GDP-tubulin monomer at CD has a free-energy change (Fig. 4)
per mol (negative) of

&3= /4AD (CD) - AOD = RT In (CD/C'D). [9]

The final process (A44) included in Fig. 4 is the spontane-
ous exchange of GTP for GDP on GDP-tubulin monomer at
CD to produce GTP-tubulin monomer at CT. The free-energy
change per mol (negative) is

ApJ4 = (AT + /GDP) - (AD + AGTP)@ [10]

The four processes above (Eqs. 7-10) comprise a cycle:

GTP-tubulin monomer -+ GTP-tubulin polymer A-
GDP-tubulin polymer -4 GDP-tubulin monomer 4-

GTP-tubulin monomer. [11]
=A2= (AOD + AP) - AOTE [8]

The symbols E and 0 are used in ,/LT and HOD to indicate a
likely conformational change in tubulin (11), as a conse-
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FIG. 4. Illustrative free-energy levels, as functions offree subunit
concentrations, for the cycle in Eq. 11.

In this cycle the tubulin returns unchanged to its initial state
(GTP-tubulin monomer at CT) but the cycle does have the net
consequence that 1 mol of GTP in solution has been hydro-
lyzed to GDP + Pi in solution for each mol of tubulin
converted into polymer. The total free-energy change (nqga-
tive) for the cycle, per mol of tubulin, is

A1 + A/U2 + AA3 + AA,4 = -X,

X- /GTP - /GDP -P

[12]

[13]

X, a positive quantity, is the thermodynamic force (17) that
drives the cycle, Eq. 11. It is the force X that makes it
possible, in Fig. 4, to have both GTP tubulin polymer more
stable than GTP'tubulin monomer and GDP-tubulin monomer
more stable than GDP-tubulin polymer.
As shown in Fig. 4, the initial free-energy level of the

system is /LT(CT) whereas the final free-energy level is I.T(CT)
- X. The value of X/RT chosen in Fig. 4 is 23.0, which
corresponds to X = 13.6 kcal mol-' (1 cal = 4.18 J) at 250C.
We turn now to the more realistic case of MTs growing

from centrosome sites until possible capture by a target, e.g.,
a kinetochore. We use the same idealized model as above.
Starting with an empty centrosome nucleated site, the initial
section of polymer formed on the site is GTP-tubulin poly-
mer. The free-energy change per mol is AA1 (Eq. 7). After the
lag period between aggregation and hydrolysis (2), all further
polymer growth in effect adds GTP-tubulin to the free tip of
the MT and simultaneously converts GTPtubulin to
GDP-tubulin (by hydrolysis) at the base of the GTP cap, the
cap having been created by the "initial section of polymer"
mentioned above. Thus, as this second and principal stage of
growth proceeds, the cap maintains a constant size at the tip
of the MT and the net process is GTP tubulin monomer -*
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GDP-tubulin polymer. That is, the growth appears as length-
ening GDP-tubulin polymer, which extends from the centro-
some site to the base of the GTP-tubulin cap. The associated
free-energy change per mol in this second stage of growth is
A/.1+ IA/ 2.
If the tip of the MT loses its cap by a fluctuation (free-

energy change per mol of cap, A2) before the tip is captured,
the MT will then shorten from the tip back to the empty
centrosome site (free-energy change per mol, AA3 + Ag4). In
this case an amount of free energy X per mol of polymer
formed has been expended to pay for the exploratory mission
by the MT tip (11).

If, however, the MT tip is captured by, say, a kinetochore,
with cessation of growth, the GTP cap will be lost by
hydrolysis (free-energy change per mol, AA2). The MT will
then shorten (free-energy change per mol, AA3 + A4),
pulling the target to the centrosome. Again an amount of free
energy X, per mol of polymer formed, will have been
expended. However, in this case, if the target offers a steady
resisting force F to the attached polymer as it shortens, some
of AA3 (and X) is converted into mechanical work (see p. 54
of ref. 13). The amount of this work, per subunit of polymer
formed, is Fl, where I = 6.15 A. The overall efficiency of
free-energy conversion, Fl/X (X here is per molecule of
GTP, not per mol), is generally very small (13). The main
value of the GTP free-energy expenditure in MTs (11) would
appear to be to make possible both growth and rapid
shortening, as in the Eq. 11 cycle.

Mean Time Required for a Target to Capture a Microtubule

We begin this section by considering the relatively simple
capture of a centrosomal MT by an isolated nearby target.
The second topic discussed is the more complicated capture
of a centrosomal MT by a kinetochore (target) in the
metaphase plate of chromosomes.
Suppose that a centrosome with N nucleated sites has a

steady-state distribution of MTs emanating from these sites,
in the presence ofa free subunit concentration c. The MTs are
assumed to project outward from the centrosome in a
completely random way (with spherical symmetry). Suppose
further that there is an isolated small target for capture of a
MT at a distance d from the centrosome. The target has a
capture cross-sectional area A normal to the line between
target and centrosome. What is the mean time t1 for capture
of a MT by the target?
A MT that can just reach the target has v = d/l subunits,

where 1 = 6.15 A. The steady-state probability that any one

nucleated site of the centrosome has on it a growing MT with
m subunits is Pm(C), where Pm is given by equation 35 of ref.
8. The mean steady-state current (number per unit time) of
MT tips crossing the entire spherical surface of radius d about
the centrosome, in the outward (growing) direction, is NP,(c)
J1(c), where J1(c) is the mean rate of growth (subunits s-1) of
the a (or +) end of a MT when this end is capped (i.e., the
end is in phase 1). The probability that any MT tip crossing
this spherical surface will hit the target is A/47rd2 (because A
<< 4rrd2). Hence X, the mean number of hits per unit time,
is given by

X = NP,(c)J1(c)(A/47rd2). [14]

The mean time between hits, or the mean lifetime of a new

target before it captures a MT, is t = 1/A. A numerical
example is given below.

If c is very close to ca (the critical concentration for the a

end), most steady-state MTs will be much larger than any
reasonable value for v = d/l, and hence P1. will be extremely
small. Also, if c is very small, very few steady-state MTs will
be as large as v so that P1 will again be extremely small. For
any specified v, P1(c) will have a maximum at a c in the

neighborhood of that c which makes mi = v, where mh is the
mean steady-state MT size (equation 44 of ref. 8).
We turn now to a numerical example. For rate constants of

the two-phase kinetic model (1, 8), including c dependence,
we use equations 2, 3, and 6 of ref. 12 (for the a end). In this
case, the critical concentration for the a end is cal = 9.75 /uM.
During mitosis, c will be reduced below ca by the extensive
MT polymerization (11). Values of 105P,, from equation 35 of
ref. 8, for c = 6, 7, and 8 AM and for d = 5, 7.5, and 10 Aum
(for which v = 8130, 12,195, and 16,260, respectively) are
given in Table 1.
We complete the calculation of X and T (Eq. 14) for the

particular case c = 6 AM, d = 5 ,m (Table 1). We assume N
= 250 (mitotic centrosome) and take A as the area (ra2) of a
circle of radius a = 0.25 Aum (used below for a kinetochore).
Then A/4 rrd2 = 6.25 x 10-4. At the above c, J1 = 31.73 s-1.
Using P,from Table 1, Eq. 14 then gives X = 2.01 x 10-4 S-1
and Jf = 82.7 min, a very long time. This is a consequence of
the very small target and the very small value of Pv (the
steady-state Pm is spread out over a very wide range in m; Pm
= Poxm, x = 0.999879).
Capture of aMT by a Kinetochore. We idealize by assuming

that the metaphase plate of chromosomes completely fills the
plane of a circle of radius b. The center of this circle is a

distance d from the centrosome (pole) of interest, along a line
normal to the plane of the circle. A circular kinetochore
(target), of radius a, is located at the center of the large circle
(b >> a). How long does it take this target to capture a
centrosomal MT at steady state? We sketch the solution
below. However, not enough information is available to
permit a definitive numerical calculation.
The essential new feature here is that a significant number

of MTs growing out from the centrosome hit the metaphase
plate. Such a MT will stop adding new subunits (ref. 13, pp.

71-75), which normally replenish the GTP cap; hence, the
cap will deteriorate by hydrolysis. This will be followed by
shortening of the MT (i.e., phase 1 -- phase 2) and detach-
ment from the plate. However, while the MT tip is on the
metaphase plate (i.e., while the cap is deteriorating), the tip
may diffuse in two dimensions to the small target (kineto-
chore) and be captured. Thus, the plate acts as a relatively
large interim collecting device for the ultimate small tar-
get (18).
For simplicity, we treat all MTs that hit the metaphase

plate as having a length d and v = d/l subunits (it is tedious
but not difficult to avoid this simplification). The kinetic
diagram for any one of these MTs is shown in Fig. 5. Thus the
usual diagram (figure 6, ref. 8) for an uninhibited centrosomal
MT is cut off and turned around at m = v. The new rate
constant k. is the reciprocal of the mean time it takes for the
GTP cap of a MT that has reached the metaphase plate to
deteriorate sufficiently by hydrolysis to allow MT shortening
to begin (phase 2). The mean hydrolysis rate constant K for
GTPs in a cap is 0.25 min-' (2). In the time 1/K, 63% of the
GTPs in a cap will have been hydrolyzed. Hence, as a

reasonable guess, we take k. = 0.25 min-1 = 4.167 x lo-,
s, independent of c. Because k0 << J1, P* will be quite
large (the asterisk refers to the truncated diagram in Fig. 5).
Considered as a random walk problem, there is delayed
reflection at m = v in Fig. 5.

Table 1. Values of 105P, in an example

d, j.m
c, AM 5 7.5 10

6 4.06 2.48 1.52
7 3.38 2.59 1.99
8 2.21 1.93 1.68
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FIG. 5. Kinetic diagram for a centrosomal MT that encounters
the metaphase plate of chromosomes at m = P. The upper states
(probabilities P* ) are in phase 1 (GTP cap); the lower states are in
phase 2 (no GTP cap), with probabilities R* . J2 is negative.

The steady-state probability distribution in Fig. 5 is easy to
find:

PV = (J1Pe /k,)x-1, P * =P*o xm

(m=1, . ., - 1) [1S]

= (JV1P:/J2)Xm-1 (m = 1,... , v) [16]

Po
-k-J2(1-X)

kDV1 - J2) - J1J2xP1 - (koJl - koJ2 - J1J2) X [

x Jj(k' - J2)/ - J2 (k + J1). [18]

The subscript a (for the a end) has been dropped from these
rate constants. Note that Jo is negative.
For the same numerical example as in Table 1 (plus the ko

value above), P* and 105PZj have been calculated and are
given in Tables 2 and 3. Note that P* 1 is larger than P,
(because ofthe reflection atm = v) and that P,* is much larger
than both ofthese (by a factor of :104). MTs that hit the plate
spend a significant fraction (P,,*) of their steady-state lifetimes
in contact with the plate.
The mean number (X*) of direct hits of the kinetochore per

unit time by growing MTs will be given by Eq. 14 but with
P.1(c) in place ofP,(c). Tables 1 and 3 show that X* > X (Eq.
14), but X* is still small. The direct hits will, however, be
supplemented by a presumably much larger number of
indirect hits (8* per unit time) from MT tips on the metaphase
plate.
We adopt the model of Adam and Delbruck (18) to find an

expression for 8P. Let N* be the number of centrosomal MTs
(out ofN = 250) that grow in the direction ofthe plate. (From
a consideration of the solid angle involved, N* may be of
order 20.) Hence the mean number ofMT tips on the plate at
steady state is N*P' . Let X be the mean time required for any
one of these tips to diffuse in the circle (plate) of radius b to
the small target of radius a. Because b >> a, a good
approximation to r is (18)

X-(b2/2D)[ln (b/a) - 0.50], [19]

Table 2. Values of P* in an example
d, .m

C, AM 5 7.5 10

6 0.331 0.197 0.119
7 0.422 0.295 0.212
8 0.484 0.368 0.288

Table 3. Values of 105P* 1 in an example

d, ,um
c, ,uM 5 7.5 10

6 4.34 2.59 1.56
7 4.74 3.32 2.39
8 4.75 3.61 2.83

whereD is the two-dimensional diffusion coefficient of a MT
tip on the plate. Then the number of indirect hits of the target
per unit time is S* = N*P,*/r. Finally, the mean lifetime of a
kinetochore (target) before a hit of either kind is

T* = 1/(X* + 8*), [20]

which is presumably much smaller than I above.
We can estimate a as =0.25 ,um and b as -3 gm if d = 5

kum (N*/N and bid must be self-consistent), but D is
unknown. The difficulty is that D is determined by the
brownian motion of the entire MT, which is anchored at the
centrosome, but this motion is restrained at the tip by the
molecular roughness on the plate and by the fact that the MT
is pushing against the plate (ref. 13, pp. 71-75). The resistance
to the motion of the MT tip on the plate is difficult to judge.
An experimental estimate off* would allow a calculation of
D, using Eq. 20.
To illustrate the calculation ofD in this way, suppose that

lines drawn from the two ends of a diameter of the metaphase
plate to the centrosome form an angle of 600 at the centro-
some. Then

N*/N = (2 - V3)/4 = 0.0670,
N* = 16.7, b = d/<V. [21]

Using a = 0.25 ,um, d = 5 Aum, and c = 6 tLM, we find from
Tables 2 and 3 and Eq. 20 that if t* = 2, 4, or 6 min, then we
require D = 11.9, 5.8, and 3.8 x 10-11 cm2 s-1, respectively.
These values happen to be in the range found for protein
molecules diffusing laterally in a membrane.

I thank Marc Kirschner, Tim Mitchison, and Bruce Nicklas for
stimulating comments.
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